Predicting GDP growth across different Quantiles Honor Thesis

Qinwen (Katherine) Wang

Advisor: Dr. Seunghwa Rho Committee: Dr. Ruoxuan Xiong Dr. Bree Ettinger

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Presentation Overview

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

2 Method

3 Result

Introduction Motivation

< □ > < 同 > < 回 >

- Why GDP growth estimate?
- Why quantile analysis?

Figure: Comparison of OLS and quantile regression

Introduction

We choose to analyze the relationship between real GDP growth and National Financial Conditions Index(NFCI).

Figure: Quarterly NFCI & real GDP growth

Introduction

• Univariate Analysis

Estimation of τ^{th} quantile of $ggdp_{t+h}$ is defined as:

$$\hat{Q}_{ggdp_{t+h}|ggdp_t}(au) = \hat{eta}_{0, au} + \hat{eta}_{1, au}ggdp_t$$

and

$$\hat{Q}_{ggdp_{t+h}|NFCI_t}(au) = \hat{eta}_{0, au} + \hat{eta}_{1, au} NFCI_t$$

Bivariate Analysis

Estimation of τ^{th} quantile of $ggdp_{t+h}$ under bivariate condition can be defined as:

$$\hat{Q}_{ggdp_{t+h}|ggdp_t+NFCl_t}(au) = \hat{eta}_{0, au} + \hat{eta}_{1, au}ggdp_t + \hat{eta}_{2, au}NFCl_t$$

Method

List of the methods we use for GDP growth estimates:

- Quantile Regression classic QR method
- IVXQR¹ address QR invalidity
- Forest Based Methods
 - Quantile Regression Forest²
 - Generalized Quantile Random Forest³

¹David M. Kaplan and Yixiao Sun. "SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION". In: *Econometric Theory* 33.1 (2017), pp. 105–157.

²Nicolai Meinshausen. "Quantile Regression Forests". In: *JOURNAL OF MACHINE LEARNING RESEARCH* 7 (2006), pp. 983–999.

³Susan Athey, Julie Tibshirani, and Stefan Wager. *Generalized Random Forests*. 2016. イロト・オフト・ミン・ミン・マン・

Quantile Regression

Estimate τ^{th} quantile of y: $Q_{y_{t+h}|x_t}(\tau) = x'_t \beta_{\tau}$

$$\hat{\beta} = \operatorname{argmin} \sum_{i=1}^{n} (y_{t+h} - x'_t \beta)^2$$

• Median ($\hat{\beta}_{0.5}$):

$$\hat{\beta}_{0.5} = \operatorname{argmin} \sum_{i=1}^{n} |y_{t+h} - x_t' \beta_{0.5}|$$

• Quantile Regression:

$$\hat{\beta}_{\tau} = \operatorname{argmin} \sum_{t=1}^{T-h} |u| \cdot \{\tau \cdot \mathbb{1}[u_t \ge 0] + (1-\tau) \cdot \mathbb{1}[u_t < 0]\}$$

where $u_t = y_{t+h} - x'_t \beta_{\tau}$ is the residual.

IVXQR

When NFCI process is approximated with an AR(1) process,

$$NFCI_t = \rho NFCI_{t-1} + \varepsilon_t$$

the AR parameter estimate ρ is around 0.88, indicating that NFCI is highly persistent.

QR method will lead to size distortion if one or more predictors are persistent. Therefore, we apply IVXQR to address the invalidity.

IVXQR

IVXQR adopts IVX filtering⁴ method to define the instrument variable \tilde{z}_t in the following way:

$$\tilde{z}_t = R\tilde{z}_{t-1} + \Delta x_t$$

- $R \rightarrow 0$, \tilde{z}_t boils down to the first difference transformation.
- $R \rightarrow 1$, \tilde{z}_t becomes the level of the variable without transformation.

⁴Tassos Magdalinos and Peter C. B. Phillips. "Limit Theory for Cointegrated Systems with Moderately Integrated and Moderately Explosive Regressors". In: *Econometric Theory* 25.2 (2009), pp. 482–526.

For the model we consider, the following moment conditions need to be satisfies:

$$\sum_{t=1}^{n} (\tau - \mathbb{1}[u_t < 0]) = o_p(1)$$
$$\sum_{t=1}^{n} ggdp_t (\tau - \mathbb{1}[u_t < 0]) = o_p(1)$$
$$\sum_{t=1}^{n} \tilde{z}_t (\tau - \mathbb{1}[u_t < 0]) = o_p(1)$$

where

$$u_{t} = y_{t+h} - \hat{\beta}_{0,\tau} - \hat{\beta}_{1,\tau} ggdp_{t} - \hat{\beta}_{2,\tau} NFCI_{t},$$

$$\tilde{z}_t = (1 - 5/n^{\delta})\tilde{z}_{t-1} + \Delta NFCI_t.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

IVXQR-ivqr

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

IVXQR-see

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

IVXQR-see smoothes out the moment condition by replacing the indicator function, $1[u_t < 0]$, with

Figure: IVXQR-see smooth visualization

Tree Based Methods

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

We used two branches for Tree Based Methods Analysis:

- Quantile Regression Forest
- Generalized Quantile Random Forest

Tree Based Methods

1. Quantile Regression Forest

Different from random forest, quantile regression forest obtained the distribution $F(y|X = x) = Pr[Y \le y|X = x]$ instead of the mean only.

$$\hat{F}[y|X=x] = \sum_{i=1}^{n} w_i(x)\mathbb{1}[Y_i \leq y]$$

where the weight can be defined as:

$$w_i(x) = k^{-1} \sum_{t=1}^k \frac{\mathbb{1}[x_i \in I(x, \theta_t)]}{\#I(x, \theta_t)}$$

Consider we have *k* trees in total, $I(x, \theta_t)$ denotes the leaf that x falls into for tree $T(\theta)$, and $\#I(x, \theta)$ is the total number of observations in the node.

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへぐ

Tree Based Methods

2. Generalized Quantile Random Forest

The generalized random forest (**grf**) and quantile regression forest have different definitions for weight. **grf** estimates the weight based on closeness to ($NFCI_t = c_1, ggdp_t = c_2$).

Therefore, the problem becomes:

$$\frac{1}{n}\sum_{t=1}^{T}w(NFCI_t,ggdp_t;c_1,c_2)\begin{pmatrix}1\\ggdp_t\\\tilde{z}_t\end{pmatrix}(\tau-\mathbb{1}[u_t>0])=0$$

where $u_t = \hat{\beta}_{0,\tau} + \hat{\beta}_{1,\tau} ggdp_t + \hat{\beta}_{2,\tau} NFCI_t - y_{t+h}$, and $w(NFCI_t, ggdp_t; c_1, c_2)$ denotes the weight.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Recall our model:

$$\hat{Q}_{ggdp_{t+h}|ggdp_t}(au) = \hat{eta}_{0, au} + \hat{eta}_{1, au}ggdp_t$$

and

$$\hat{Q}_{ggdp_{t+h}|NFCl_t}(au) = \hat{eta}_{0, au} + \hat{eta}_{1, au} NFCl_t$$

Objective

• Compare $\beta_{1,\tau}$ calculated using QR and IVXQR methods with OLS.

Figure: Quantile Regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

SQC.

æ

Recall our model:

$$\hat{Q}_{ggdp_{t+h}|ggdp_t+NFCl_t}(\tau) = \hat{\beta}_{0,\tau} + \hat{\beta}_{1,\tau}ggdp_t + \hat{\beta}_{2,\tau}NFCl_t$$

Objective:

- Determine if estimates across quantiles are meaningful.
- Compare the estimates using different models.
- Present predicted distribution for one- and four-quarter GDP growth.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

How to obtain the confidence interval?

Apply 4-order Vector Autoregression (VAR)

$$egin{pmatrix} \textit{NFCI}_t \ \textit{ggdp}_t \end{pmatrix} = egin{pmatrix} eta \ lpha \end{pmatrix} \textit{X}' + egin{pmatrix} u_1 \ u_2 \end{pmatrix}$$

- Restore with randomly generated residuals
- Record quantile estimates for each iterations
- Obtain confidence interval from the esimates

< ∃⇒

э

Figure: Estimated Quantile Regression Coefficients

Figure: Compare across models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

ъ

Figure: Predicted Distribution using QR

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

We conduct out-of-sample predictions using Expanding Window Forecast.

Figure: Expanding Window Forecast

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Final Prediction Error

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Final Prediction Error:

$$\frac{1}{T-k}\sum_{s=k}^{T}\rho_{\tau}(y_{s}-\hat{y}_{s})$$

where \hat{y}_s is prediction for τ . Based on FPE, we choose the optimal configurations for each models:

rangerts	1-quarter ahead	$maxnode{=}11, minnode{=}10, blocksize{=}20$				
	4-quarter ahead	$maxnode{=}12, minnode{=}10, blocksize{=}12$				
grf	1-quarter ahead	minnode=10				
	4-quarter ahead	minnode=3				

Result - Quantile Regression

Panel B. 4 quarter prediction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Out-of-sample Prediction Result - IVXQR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Result - Quantile Random Forest

Final Prediction Error across models

A summary of FPE across different models:

	quantreg		rangerts		grf		ivqr		see	
	h1	h4	h1	h4	h1	h4	h1	h4	h1	h4
$\tau = 0.05$	0.2706	0.1977	0.3195	0.1615	0.2430	0.1379	0.2692	0.1625	0.2565	0.1599
$\tau=0.25$	0.6752	0.5128	0.7432	0.5610	0.6848	0.4752	0.6772	0.5269	0.6779	0.5200
$\tau=0.50$	0.8236	0.6649	0.8471	0.7000	0.8029	0.6345	0.8428	0.7159	0.8497	0.7178
$\tau=0.75$	0.6939	0.5184	0.6966	0.5468	0.6736	0.5202	0.7143	0.5496	0.7479	0.5755
$\tau=0.95$	0.2392	0.1823	0.2392	0.1648	0.2518	0.1796	0.2493	0.3087	0.2619	0.2882

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

- Lower FPE at h4 than h1.
- Lower FPE at the tails.
- Generalized Quantile Random Forest has the best performance.

References

- Athey, Susan, Julie Tibshirani, and Stefan Wager. Generalized Random Forests. 2016.
- Kaplan, David M. and Yixiao Sun. "SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION". In: *Econometric Theory* 33.1 (2017), pp. 105–157.
- Magdalinos, Tassos and Peter C. B. Phillips. "Limit Theory for Cointegrated Systems with Moderately Integrated and Moderately Explosive Regressors". In: *Econometric Theory* 25.2 (2009), pp. 482–526.
 - Meinshausen, Nicolai. "Quantile Regression Forests". In: *JOURNAL* OF MACHINE LEARNING RESEARCH 7 (2006), pp. 983–999.